Search results for "Pettis Integral"
showing 10 items of 43 documents
Convergence for varying measures
2023
Some limit theorems of the type $\int_{\Omega}f_n dm_n -- --> \int_{\Omega}f dm$ are presented for scalar, (vector), (multi)-valued sequences of m_n-integrable functions f_n. The convergences obtained, in the vector and multivalued settings, are in the weak or in the strong sense.
Non absolutely convergent integrals of functions taking values in a locally convex space
2006
Properties of McShane and Kurzweil-Henstock integrable functions taking values in a locally convex space are considered and the relations with other integrals are studied. A convergence theorem for the Kurzweil-Henstock integral is given
Riemann type integrals for functions taking values in a locally convex space
2006
The McShane and Kurzweil-Henstock integrals for functions taking values in a locally convex space are defined and the relations with other integrals are studied. A characterization of locally convex spaces in which Henstock Lemma holds is given.
A decomposition theorem for compact-valued Henstock integral
2006
We prove that if X is a separable Banach space, then a measurable multifunction Γ : [0, 1] → ck(X) is Henstock integrable if and only if Γ can be represented as Γ = G + f, where G : [0, 1] → ck(X) is McShane integrable and f is a Henstock integrable selection of Γ.
Henstock–Kurzweil–Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space
2013
Abstract The aim of this paper is to describe Henstock–Kurzweil–Pettis (HKP) integrable compact valued multifunctions. Such characterizations are known in case of functions (see Di Piazza and Musial (2006) [16] ). It is also known (see Di Piazza and Musial (2010) [19] ) that each HKP-integrable compact valued multifunction can be represented as a sum of a Pettis integrable multifunction and of an HKP-integrable function. Invoking to that decomposition, we present a pure topological characterization of integrability. Having applied the above results, we obtain two convergence theorems, that generalize results known for HKP-integrable functions. We emphasize also the special role played in …
Lineability of non-differentiable Pettis primitives
2014
Let \(X\) be an infinite-dimensional Banach space. In 1995, settling a long outstanding problem of Pettis, Dilworth and Girardi constructed an \(X\)-valued Pettis integrable function on \([0,1]\) whose primitive is nowhere weakly differentiable. Using their technique and some new ideas we show that \(\mathbf{ND}\), the set of strongly measurable Pettis integrable functions with nowhere weakly differentiable primitives, is lineable, i.e., there is an infinite dimensional vector space whose nonzero vectors belong to \(\mathbf{ND}\).
On the equivalence of McShane and Pettis integrability in non-separable Banach spaces
2009
Abstract We show that McShane and Pettis integrability coincide for functions f : [ 0 , 1 ] → L 1 ( μ ) , where μ is any finite measure. On the other hand, assuming the Continuum Hypothesis, we prove that there exist a weakly Lindelof determined Banach space X, a scalarly null (hence Pettis integrable) function h : [ 0 , 1 ] → X and an absolutely summing operator u from X to another Banach space Y such that the composition u ○ h : [ 0 , 1 ] → Y is not Bochner integrable; in particular, h is not McShane integrable.
On the integration of Riemann-measurable vector-valued functions
2016
We confine our attention to convergence theorems and descriptive relationships within some subclasses of Riemann-measurable vector-valued functions that are based on the various generalizations of the Riemann definition of an integral.
On strongly measurable Kurzweil-Henstock type integrable functions
2009
We consider the integrability, with respect to the scalar Kurzweil-Henstock integral, the Kurzweil-Henstock-Pettis integral and the variational Henstock integral, of strongly measurable functions de ned as f = P1 n=1 xn [n;n+1),where (xn) belongs to a Banach space. Examples which indicate the difference between the scalar Henstock-Kurzweil integral and the Henstock- Kurzweil-Pettis integral and between the variational Henstock integral and the Henstock-Kurzweil-Pettis integral are given.
A characterization of strongly measurable Henstock-Kurzweil integrable functions and weakly continuous operators
2008
We give necessary and sufficient conditions for the Kurzweil–Henstock integrability of functions given by f =n=1 xnχEn , where xn belong to a Banach space and the sets (En)n are measurable and pairwise disjoint. Also weakly completely continuous operators between Banach spaces are characterized by means of scalarly Kurzweil–Henstock integrable functions